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stability and its ease of preparation from hemiacetal 11, the 
imidate 13 appears as an efficient a-L-fucosylating agent. 
Further use for the syntheses of blood group substances is now 
under way in our laboratory. 

Finally, l-O-^-methyOacetimidyl-l.S.^-tetra-O-ben-
zyl-0-D-galactopyranose (21) was used to prepare the pro­
tected disaccharide 10 (74%) as a glass, [a]2 0

D +33° (c 1.1, 
CHCl3).15 

The examples reported herein prove that this novel approach 
is of wide applicability for the preparation of a wide variety of 
di- and oligosaccharides. 
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Stepwise Reduction of the 
Carbon-Nitrogen Triple Bond of Acetonitrile on 
the Face of a Triiron Nonacarbonyl Cluster 

Sir: 
The use of transition metal clusters as homogeneous cata­

lysts1 and stoichiometric reagents2 is currently of great inter­
est.3 Metal atom clusters permit a greater variety of interac­
tions with substrates than is possible in mononuclear com­
plexes. Some examples can be cited for the cluster chemistry 
of iron,4a-b but an even richer field has been found for ru­
thenium and osmium.4b'c'5 This greater diversity of interactions 
is also believed to be responsible for the ability of clusters to 
carry out reactions which mononuclear species generally can 
not, such as the reduction of triple bonds.3b We report here the 
preparation of a unique series of complexes (Scheme I) which 
clearly delineate a sequence for the reduction of the carbon-
nitrogen triple bond of an organic nitrile on the face of an 
Fe3(CO)9 cluster. 

In an attempt to extend our studies of hydridocarbonyl 
cluster chemistry6 to that of the more common metals we 
treated W(CO)5I- with Fe2(CO)S2- in refluxing acetonitrile. 
The resulting anion mixture (later shown to contain 2)7a was 
acidified and the neutral product thus obtained was analyzed 
by mass spectrometry. Surprisingly, it contained no tungsten, 
but it did contain the elements of a molecule of acetonitrile. 
Spectroscopic data7b indicated structure 3 which has been 
confirmed by an x-ray determination.8 The tungsten by­
product was determined to be W(CO)3(CH3CN)3. We have 
subsequently found that anion 2 is also formed by the base 
disproportionation reaction9 of Fe(CO)5 in moist acetonitrile, 
presumably via HFe3(CO)n - (1) (vide infra). Some 
HFe(CO)4- as well as iron metal also forms. The HFe(CO)4-

decomposes when sodium iodide is included in the reaction 
mixture, thereby facilitating workup.10 The only apparent 
reference to acetonitrile-induced base disproportionation of 
Fe(CO)5 is a patent claiming Fe(CO)5 as a catalyst precursor 
for the hydrogenation of nitriles to amines (500-5000 psi H2, 
100-300 0C).11 The existence of metal carbonyl infrared 
spectral changes was noted (but not documented) in that work 
during preparation of the catalyst from Fe(CO)5 in refluxing 
acetonitrile. 

The neutral product HFe3(CO)9(CH3C=NH) (3) is slowly 
air oxidized in solution to give Fe3(CO)9(CH3C====N) (6a)12 

in 20% yield. (The remaining iron can be approximately ac­
counted for as Fe(CO)5 and iron oxide.) Significantly, 6a could 
not be prepared directly from either Fe3(CO) i2 or Fe2(CO)9 
and acetonitrile. It (6a) can, however, be hydrogenated back 
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to 3 at 1 atm pressure in refluxing cyclohexane. As expected 
(vide infra), 4 and 5a are also formed under these conditions. 
Since compound 6a did not give crystals suitable for x-ray 
work, a propyl derivative 6b was prepared13 whose structure14 

is analogous to that of the isoelectronic acetylide complex 
HRu3(CO)9(C=CR).15 

A compound of the same composition (mass spectroscopy) 
as 3 can be isolated in 4% yield from the original preparations10 

which is assigned structure 4 based on spectral data, especially 
1H NMR.16,17 This complex is an isomer of 3 and can in fact 
be prepared by the irreversible isomerization of 3 (with ~50% 
decomposition) in refluxing hexane. The iV-iminyl (or alk-
ylidenimino) bonding mode observed in 4 is thus thermody-
namically more stable than the C-iminyl bonding mode found 
in 3. Analogous 1,1 and 1,2 isomeric forms of isoelectronic 
hydrocarbon complexes, i.e., H2Os3(CO)9(C=CRH) and 
H2Os3(CO)9(RC=CH), are known for osmium and ruthen­
ium4,5 but, unlike the present case, these isomers do not in-
terconvert. 

Treatment of 4 with hydrogen gas (200 psi, room temper­
ature) results in clean conversion to H2Fe3(CO)9(NCH2CH3) 
(5a).20,21 This step completes the reduction of the carbon-
nitrogen triple bond on the Fe3(CO)9 cluster starting from 
either 1 or 6. Scheme I thus constitutes one of the clearest ex­
amples to date of the chain of events occurring on a cluster 
surface leading to the extensive transformation of an organic 
substrate. Although isoelectronic hydrocarbon analogues of 
most of the complexes in Scheme I are known for heavier metal 
(Ru and Os) clusters, no single interconversion scheme has yet 
been reported equivalent to the one demonstrated here; such 
a scheme, however, can be constructed from the separate re­
ports.23 In addition, Scheme I may serve as a model for the 
mechanism of the previously cited11 Fe(CO)s-catalyzed hy-
drogenation of nitriles to amines; iron metal ubiquitous in this 
system might also participate in the reaction. 

Scheme I also provides useful insights into stoichiometric 
reactions involving clusters, especially those of HFe3(CO) 11 ~ 
itself. Thus, 1 is known to reduce nitro compounds to amines 
under protic conditions.2a'c By repeating the reaction under 
aprotic conditions, we have obtained an anion (presumably 
HFe3(CO)9(NPh)-, 7) which gives complex 5b on room 
temperature acidification. The preparation of 7 and 5b and the 
observation of peaks due to free aniline in the mass spectrum 
of 5b24 make it likely that they are intermediates in the re­
duction of nitro compounds to amines by 1. 

One final important question raised by the current work has 
to do with the nature of the iron complex(es) that lead to the 
formation of anion 2. Our observations to date strongly im­
plicate HFe3(CO)n~ as the primary precursor. In particular, 
1 does react with acetonitrile to give 2 together with 
HFe(CO)4

-. We interpret this as evidence for the competition 
between (a) Fe-H addition or nucleophilic attack by 1 on ac­
etonitrile (followed by proton transfer from Fe to N in the 
latter case) to give 2 and (b) nucleophilic cleavage of 1 by ac­
etonitrile to give HFe(CO)4

-. (The two Fe(CO)4 fragments 
thus generated could be recycled to 1 by the disproportionation 
reaction or could decompose to iron metal, a by-product in the 
synthesis of 2 by all routes.) In contrast, we can specifically rule 
out HFe(CO)4

-, Fe2(CO)8
2", and HFe2(CO)8" as the species 

responsible for the formation of 2, owing to the nonreaction 
of the first two and the disproportionation of the third (to 
HFe(CO)4

- and 1) under the reaction conditions. These data 
suggest that Fe-H addition or nucleophilic attack on the car­
bon-nitrogen triple bond may be subject to an unfavorable 
equilibrium constant as indicated by the lack of any product 
formation with HFe(CO)4

-. For the triiron cluster 1, however, 
the triple bond reduction would become irreversible when 
followed by loss of two CO groups and coordination of the 
organic ligand to give 2. This may be one of the reasons for the 
greater effectiveness of clusters over mononuclear complexes 
in reactions involving potentially multidentate ligands. 
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Extensive Configuration Interaction Studies 
of the Methylene Singlet-Triplet Separation 

Sir: 

For more than a decade now there have been two sets of 
conflicting experimental values for the 3Bi - 1Aj energy 
separation in CH2, the simplest carbene; the "low" values1 

cluster about M - 2 kcal/mol and the "high" values2-3 near 8-9 
kcal/mol. As if this situation were not confusing enough, a 
third experimental value, 19.5 ± 0.7 kcal, has recently been 
reported by Lineberger and co-workers4 on the basis of their 
laser photodetachment study. This latest experimental value 
appears the most reliable, since the energy difference AE is 
obtained from a direct spectroscopic measurement. 

Every ab initio theoretical study to date5"7 has rejected the 
1-2-kcal AE value, and all but one8 have yielded singlet-triplet 
separations even larger than the old "high" value of 8-9 kcal. 
Among the most reliable theoretical treatments is that of 
Bender and co-workers,9 whose configuration interaction (CI) 
calculations gave a AE value of 14.0 kcal. Since it appeared 
at the time (5 years ago) that additional refinements (e.g., basis 
set improvements) would lower the singlet-triplet separation, 
they estimated that the true AE value lies 1-5 kcal below the 
calculated 14.0 kcal. Thus, the lowest possible estimate nearly 
coincided with the "high" experimental value of 8-9 kcal. 
However, if Lineberger's experimental result4 is the true AE 
value, this line of reasoning is incorrect and the calculated 14.0 
kcal must be increased by ~5 kcal. In an attempt to clarify this 
point, it was decided to carry out state-of-the-art ab initio CI 
calculations. A communication by Roos10 tackles the same 
problem using different theoretical methods. 

Our present study begins with a "standard" set of calcula­
tions. Additional basis set and correlation effects will be 
evaluated relative to this standard. The standard basis was of 
the contracted gaussian variety,11 labeled C(IOs 6p 2d/6s 4p 
2d), H(5s lp/3s Ip). This basis is considerably larger than any 
to date5-9 for which electron correlation has been variationally 
evaluated. This standard basis also reproduces to within 0.1 
kcal the Hartree-Fock limit AE value12 of 24.8 kcal/mol. 
Polarization function orbital exponents were optimized in the 
CI calculations and have the values 1.07, 0.33 (carbon d 
functions) and 0.95 (hydrogen p functions) for 3Bi CH2 and 
1.05, 0.30 (carbon d functions) and 0.89 (hydrogen p func­
tions) for 1A1 CH2. 

The standard CI include all Slater determinants differing 
by one or two spin orbitals from the self-consistent field (SCF) 
reference configurations 

3B, la,22ai2 lb 2
2 3a i a lb,a (1) 

1Ai la , 22ai 2 lb 2
23ai 2 (2) 

Core and core-valence correlation effects were excluded by 
doubly occupying the lai orbital in all determinants. This yields 
4542 determinants for the 3Bi state and 5359 determinants for 
the 1A1 state when the standard 42 function basis set is em­
ployed. The CI calculations were performed on the Harris 
Slash Four minicomputer13 using the BERKELEY system14 of 
programs. Per point on the respective potential energy surfaces, 
roughly 57 and 66 min of elapsed time was required. Since the 
cost of time on the Harris Slash Four is only $8/hour, these 
computations were quite economical. 

The equilibrium geometries of triplet (0 = 134°, r = 1.08 
A) and singlet (0 = 102.4°, r = 1.11 A) methylene are well 
known15'16 and were assumed here. The standard CI total 
energies were —39.06216 and —39.04065 hartrees, yielding 
a prediction of 13.5 kcal for AE (3Bi - 1Ai). The present 
variational 3Bi total energy lies 31.4 kcal below the comparable 
result of Bender9. 

Following the "standard" calculations, a number of addi-
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